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BOUNDARY layers on bodies immersed in saturated porous 
media for both free and mixed convection have been the 
subject of several recent papers and these are reviewed in 
Cheng [l]. Merkin [2] considered the free convection bound- 
ary layers on two-dimensional and axi-symmetric bodies of 
arbitrary shape embedded in a porous medium under the 
assumption that the flow was Darcian. Recently Fand ef al. 
[3] have investigated experimentally the natural convection 
heat transfer from a horizontal cylinder which is embedded 
in a porous medium and they concluded “that the low Ra 
region corresponds to Darcy flow and the high to Forch- 
heimer flow”. This was the basis of experimental results for 
Ra < 200 and therefore we would expect that under the 
conditions for which the boundary-layer equations are 
appropriate that the assumption that the flow is Darcian has 
clearly been violated. 

Bejan and Poulikakos [4] reported similarity solutions for 
vertical boundary-layer natural convection near a solid wall 
adjacent to a fluid-saturated porous medium in the case when 
the pore Reynolds number is high enough for the Darcy 
flow model to break down. Here we will consider the free 
convection boundary layers on two-dimensional and axi- 
symmetric bodies of arbitrary shape in a saturated porous 
medium when the flow is non-Darcian. The bodies are 
assumed to be impermeable and at a constant temperature 
which is different to that of the surrounding fluid. We show 
that the governing equations possess a similarity solution 
for any body shape and the resulting ordinary differential 
equation is that as obtained by Bejan and Poulikakos [4]. 

In the case of a two-dimensional body we consider an 
infinite cylinder which is placed so that its generators are 
horizontal and we use the coordinate x to measure the dis- 
tance round the cylinder from the lowest point. For the axi- 
symmetric body we place its axis of symmetry vertical and 
measure x for the lowest point. In both cases the coordinate 
y is measured normal to the body and d(x) is the angle 
between the outward normal to the body and the downward 
vertical. We take 1 to be a typical length scale of the body, 
T, and T, are the temperatures of the heated surface and at 
infinity, respectively, and assume that the boundary-layer 
thickness is small in comparison to 1 so that the boundary- 
layer approximation is applicable. The governing equations 
can now be written, see Bejan and Poulikakos [4], 

aT dT d2T 
uax+vay=uayz 

g (t-u) + g (Su) = 0 

where u and u are the fluid speeds in the x and y directions. 
For two-dimensional bodies n = 0; and for axi-symmetric 
bodies n = 1 and r(x) is the radius of the body ; p, p and /3 are 
the density, viscosity and the thermal expansion coefficient of 
the fluid, K is the intrinsic permeability of the porous medium, 

tl is the thermal diffusivity of the saturated porous medium 
and g is the gravitational acceleration. The constant x is the 
Forchheimer coefficient and equation (1) is the boundary- 
layer version of the Forchheimer equation. Equations (lt 
(3) have now to be solved subject to the boundary conditions 

v = 0, T= T,,,ony=O all x 

u-0, T-+T,asy+m 1 allx 
(4) 

If we assume that the flow is Darcian then, following 
Merkin [2], we find that the x-component of velocity is 
proportional to the Rayleigh number. Thus within the boun- 
dary-layer approximation the non-Darcian term p&/p will 
dominate the term u in equation (1). Since we know that 
the non-Darcian term is very important even at Rayleigh 
numbers of O(lO), see Fand et al. [3], then we introduce the 
following non-dimensional quantities 

x = Xl, r = RI, 
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Ra-‘14Y, 
uv “l 

ll= 5? 0 Ra”*U, 

(5) 

a 

0 

lv ‘I4 Ral,4V 
V=r G 

, T-T, = (T,--T,)B. 

If we introduce the streamfunction I+G, in order to satisfy 
equation (3), which is defined by 

~=‘!?!i 
R” aY 

ff= _L?! 
R” ax 

we can now introduce the following similarity trans- 
formation 

tj= x (5 
l/2 

S”*(t)R*“(t)dt > f(q), 0 = e(q) 
II 

tj = YS”*(X)R”(X) 
i(S 

XS’!2(r)R2’(t)dr 
> 
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(6) 

0 

S(X) = sin 4. J 

Equations (lt(3) and boundary conditions (4) can now be 
written 

e.+;f0’=0 (7) 

f’ = @I’2 
(8) 

f (0) = 0, 0(O) = 1, @(co) = 0 (9) 

where the primes denote differentiation with respect to ‘I. 
Equations (7) and (8) and boundary conditions (9) are 

identical to those obtained by Bejan and Poulikakos [4] 
for the boundary-layer flow on a semi-infinite, isothermal, 
vertical wall in a porous medium for non-Darcian flow. 
They obtained 0’(O) = -0.494. The local heat transfer 
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Q = -k(~TT/dy),= o is then conclusions made in ref. [3] that at high Rayleigh numbers 
non-Darcian effects are very important. 

Q = 0.494k(T,- T,) 
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INTRODUCTION AND LITERATURE 

A SET of semi-empirical equations for the prediction of void 
fraction in annular gas-liquid flow had been derived by 
Tandon et al. [l]. These equations are rather cumbersome 
and consist of three separate equations to cover the entire 
range of flow rates. This is due to the fact that the derivation 
had been based on the semi-empirical fragmental rep- 
resentation of velocity distribution due to Von Karman and 
the Soliman et al. [2] curve-fit of the Lockha~-MartineIli 
data [3]. 

Butterworth [4] had shown that a number of the more 
commonly used holdup prediction equations may be rep- 
resented by the following relationship : 

The homogeneous model, the correlations due to Zivi 151, 
Turner and Wallis [6], Lockhart and Martinelli [3], Thorn 
[7] and Baroczy [S] may all be shown to be expressible in the 
form of equation (1). 

Chen and Spedding [9] also analysed the idealised annular 
flow situation and obtained : 

1 
a=i+X2:’ 

For the case when both the gas and the liquid are flowing in 
the turbulent regime, X is given by : 

It was found that equation (2) did not represent well the data 
available and consequently, an empirical parameter, k, was 
introduced to result in : 

k 
a=m. 

It is of interest to note at this point that Chen and Spedding 
[IO, 1 I] analysed the form of equation (1) as given by 
Butterworth [4] and found that this form of equation may in 
fact be derived for the case of ideal stratified and ideal annu- 
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FIG. 1, Comparison of void fraction correlations with exper- 
imental data of ref. [24] for the steam-water system at atmo- 

spheric ‘conditions. 


